LAMPIRAN

Lampiran 1 Matriks penelitian terdahulu

($\overrightarrow{\text { Matriks }}{ }_{\text {Re }}^{\text {kisiko Informasi Akuntansi) }}$

		9 Countries	CVSCSTF $=$ the coefficient of variation of customer and short term funds estimated in a three year moving window of annual observations Dummy variable		
		Dependent Capital market risk Independent ROA Insolvency risk Leverage risk Liquidity risk The credit risk	-Total risk -The systematic risk -The specific risk Rit $=\underline{I} i+$ üi Rmt + İit, SDROA $=$ is the standard deviation of return on assets calculated estimated The Z-score = introduced in the regression function as an inverse form, i.e. $1 / Z$ EQTA $=$ the ratio of book value equity to total assets DEPEQ $=$ introduce in the regression function to appreciate the leverage risk is the total deposits held by the bank to the book to value equity LIQTA $=$ apprehended by the ratio of liquid assets to gross loans LLPGL= the ratio of loan loss provisions to gross loans LLRGL= alternative measures of credit risk we use the ratio of loan loss	10 listed commercial Tunisian banks over the period of 19982007	SDROA doesn't have significant relations with total risk, systematic risk and specific risk LIQTA is significant but it has a negative relation with the total return risk, not as expected. systematic risk is used as the dependent variable, only the LLPGL variable is significant but the sign is negative the specific risk is used as the dependent variable, EQTA, DEPEQ and LIQTA show significant relations with the expected signs the relations between LLPGL, LLRGL and NPLGL and the capital market risk measures are not significant and do not have the expected signs the Index variable made up to
			85		

		reserves to gross loans NPLGL= the ratio of nonperforming loans to gross loans		apprehend the quantity of information disclosed to investors is significant and negatively related to systematic and specific capital market risks the systematic risk, only EQTA, DEPEQ and LIQTA are significant and have the expected signs
	Dependent Market risk Independent Accounting risk	Beta Calculating Beta of "A" Shares (Scott, 69) $\beta_{A}=\frac{\operatorname{Cov}(A, M)}{\operatorname{Var}(M)}$ -Devident payout = $\frac{\sum \text { Cash Dividends Paid to Common Shareholders }}{\sum \text { Income Avaliable to Common Shareholders }}$ -Leverage $\text { Debt to Equity=} \frac{\text { Debt }}{\text { Equity }}$ -Earning variability	The sample was constructed based on 222 firms traded on both the NYSE and the National Association of Security Dealers Automated Quotations (NASDAQ) the period 1970	From current findings there is a significant negative relation between dividend payout with beta And there other significant relation with positive sign between earnings variability with Beta. On the other hand there is no significant relation between leverage with Beta.

Institut Bisnis

| |
| :--- | :--- | :--- | :--- |

(Matriks Penggunaan Instrumen Derivatif)

No. N	Penelitian (tahun) "judul"工	Variabel	Pengukuran/Proksi	Data	kesimpulan
		Dependent Leverage risk Liquidity risk Credit risk Overall risk Independent Forward Swaps Option	EQTA $=$ the ratio of book-value-equity-to-total-assets LIQTA $=$ the ratio of liquid-assets-to-totalassets GLTA $=$ the ratio of gross-loans-to-totalassets LLRTA $=$ the ratio of loan-loss-reserves-tototal assets SDROA $=$ the standard deviation of return before taxes on assets estimated from quarterly income statements FWD $=$ Notional value of forwards divided by total assets SWP $=$ Notional value of swaps divided by total assets OPT= Notional value of options divided by total assets	The sample is composed of 137 banks spread over six regions the period from 2003 to 2010.	that forwards have negative effect on leverage risk and liquidity risk respectively at 1% and 10% level of significance. Swaps also affect negatively the two credit risk measures at level of significance equals to 1%. In contrast, options have a positive effect on leverage risk and credit risk 1 respectively at 1% and 5% level of significance, and have negative but weak effect on total risk at 10% level of significance. And finally, futures affect positively but mildly total risk at a level of significance equals to 10%.

		Future Net interest margin Bank size Dealer Country variable	FUT $=$ Notional value of futures divided by total assets NIM $=$ The difference between total interest income and total interest expense expressed, as a percentage of total assets SIZE $=$ Natural \log of total assets DEAL= 1 if bank is a member of the International Swaps and Derivative Association (ISDA), 0 otherwise COUNTRY= Dummy variable equals 1 when bank is issued from, 0 otherwise		
		Dependent Efficiency NPL ratio Coverage ratio Profitability Capital adequacy	EFF is expenses divided by total operating incomes NPL is Non-performing ratio is defined by nonperforming loans divided by gross loan COV is Coverage ratio is defined by loan loss reserves divided by non-performing loans ROA is Return on assets is measured by net income divided by total assets ROE is Return on equity is measured by net income divided by total equity CAD is The ratio of risky assets (gross loan) divided by total equity	The overall sample is composed of 137 banks from both emerging and recently developed countries the period 2003-2010	forwards positively affects NPL ratio at a level of significance equals to 1% and it affects negatively coverage ratio and net interest margin at levels of significance respectively equal to 1% and 5% the use of forwards and more clearly of options by banks in recently developed countries diminishes their performance swaps has negative effect on return on assets ratio and efficiency measure respectively at level of significance equal to 1% and 5% but it affects negatively also capital adequacy measure at 5% level of significance Options affect negatively NPL ratio at 1% level of significance but has a positive impact on capital adequacy ratio
			93		

	$\begin{aligned} & \pi \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				
		Country variable	Association (ISDA), 0 otherwise COUNTRY is Dummy variable equals 1 when bank is issued from, 0 otherwise		credit risk (CR) has a negative effect on return on equity ratio with equal 1% but it affects positively NPL ratio and coverage ratio with equal 10% Size has a positive impact on return on assets ratio at level of significance equals to 5%, and affects positively coverage ratio and efficiency measure at 1% level of significance, and finally it has a negative correlation with NPL ratio and capital adequacy measure at a level of significance equals to 1% dealer bank (DEAL) affects positively return on assets ratio and coverage ratio respectively at level of significance equal to 1% and 5% but it has a positive impact on capital adequacy measure at a level of significance equals to 1%.
		Dependent Financial performance Independent Forwards Swaps Option	SR is Stock returns FWD is Notional value of forwards divided by total assets SWP is Notional value of swaps divided by total assets OPT is Notional value of options divided	the sample analysis is defined by 74 banks from both emerging and recently developed countries the period 2003-2009	risky assets (LOAN), capital (CAP), and bank size (SIZE) affect negatively the performance measure at a level of significance equals to 1% interest margin has a positive effect on stock return performance at a level of significance equals to 10%
		95			

	reserve Net interest margin Bank size Dealer Country Variable	NIM $=$ The difference between total interest income and total interest expense expressed, as a percentage of total assets. SIZE $=$ Natural \log of total assets DEAL $=1$ if bank is a member of the International Swaps and Derivative Association (ISDA), 0 otherwise COUNTRY = Dummy variable equals 1 when bank is issued from, 0 otherwise		
	Dependent Financial Risk Independent Size Leverage	Financial risk is measure in the form of a binary code as 1 for use derivative and 0 for not use derivative - the book value of assets - the book value of total sales revenues - the book value of long-term debt to the book value of assets - the ratio of the book value of long-term debt to the book value of equity -the interest cover ratio defined as earnings before interest and taxes to the total interest expense	Research was conducted on large non-financial companies, 157 companies In the Croatian companies and 189 companies In the case of the Slovenian companies in the year 2005	The statistical analysis conducted for the Slovenian companies has revealed that the decision to use derivatives is only dependent on the size of the company, since a positive relation between the use of derivatives and the size of Slovenian companies has been proven

Abstract

\section*{Lampiran II：Daftar Perusahaan Sampel}

Daftar Nama dan Kode Perusahaan Industri Keuangan

No	㐫 Nama Perusahaan	Kode
\％	Bânking	
$\stackrel{3}{1}$	Bähank Rakyat Indonesia Agroniaga Tbk	AGRO
原	PEEBank MNC Internasional Tbk．	BABP
3	Bậ̂k Capital Indonesia Tbk	BACA
${ }_{4}$	Bäank Central Asia Tbk	BBCA
5	Bâhk Bukopin Tbk	BBKP
6	Bū̄ı ${ }^{\text {a }}$ Negara Indonesia Tbk	BBNI
曻 ${ }^{-1}$	Bajk Rakyat Indonesia（Persero）Tbk	BBRI
\％	Bäbk Danamon Indonesia Tbk	BDMN
9	PEEBank Pembangunan Daerah Banten Tbk．	BEKS
90	Pṫ2 Bank QNB Indonesia Tbk	BKSW
11	Bänk Mandiri（Persero）Tbk	BMRI
$1{ }^{1}$	Bầk ${ }^{\text {a }}$ CIMB Niaga Tbk	BNGA
9	PEEBank Maybank Indonesia Tbk	BNII
4	B⿳⺈⿴囗十大冖𧘇．Permata Tbk	BNLI
45	Bänk Tabungan Pensiunan Nasional Tbk	BTPN
\％ 6	Băak Victoria International Tbk	BVIC
17	PEEBank China Construction Bank Indonesia Tbk	MCOR
18	Bank Mega Tbk	MEGA
新 9	Bānk OCBC NISP Tbk	NISP
20	Bank Pan Indonesia Tbk	PNBN
21	PT Bank Woori Saudara Indonesia 1906 Tbk	SDRA
$\stackrel{\square}{8}$	Asuransi	
鲑	Asuransi Bina Dana Arta Tbk	ABDA
${ }^{2}$	Assuransi Harta Aman Pratama Tbk	AHAP
24	Asturansi Multi Artha Guna Tbk	AMAG
25	Aşaransi Bintang Tbk	ASBI
26	Asuransi Dayin Mitra Tbk	ASDM
27	Asuransi Jasa Tania Tbk	LPGI
28	Maskapai Reasuransi Indonesia Tbk	MREI
29	Pagninvest Tbk	PNIN
	Maltifinance	
30	Adira Dinamika Multi Finance Tbk	ADMF
31	Pacific Strategic Financial Tbk	APIC
32	Athavest Tbk	ARTA

（		Model 1
Pengugian Terhadap Variabel BETA		
\％One－Sample Kolmogorov－Smirnov Test		
		Unstandardize d Residual
No		416
Normat Parameters ${ }^{\text {a，b }}$	Mean	0E－7
	Std．Deviation	30.81178879
Most Extreme	Absolute	． 458
Differences	Positive	． 458
Nor	Negative	－． 409
Kolmogorov－Smirnov Z		9.349
Asympo Sig．（2－tailed）		． 000

1．Pengufian Terhadap Variabel BETA Pengutipan hanya untuk kepentingan pen
a Test distribution is Normal．
b．Calculated from data．
亏 를

$\stackrel{\text { 唇 }}{ }$		Unstandardize d Residual
		416
Normerametersab	Mean	0E－7
	Std．Deviation	1.97759880
Most Extreme	Absolute	． 455
Differences	Positive	． 455
㑑	Negative	－． 406
Kolmogorov－Smirnov Z		9.278
Asymp．Sig．（2－tailed）		． 000

a．Test distribution is Normal．
b．Calculated from data．
$\stackrel{1}{3}$
Pengujian Terhadap Variabel ERROR
One－Sample Kolmogorov－Smirnov Test

		Unstandardize d Residual
N		416
Normal Parameters ${ }^{\text {a，b }}$	Mean	Std．Deviation
Most	.11971037	
Differences	Absolute	.125
Kolmogorov－Smirnov Z	Positive	.049
Asymp．Sig．（2－tailed）	Negative	-.125

a．Test distribution is Normal．
b．Calculated from data．

Model 2

1. Pengujian Terhadap Variabel BETA

$\frac{\square}{\square}$		Unstandardized Residual
N		416
Normál Parameters ${ }^{\text {a,b }}$	Mean	0E-7
	Std. Deviation	30.82065249
\bigcirc -	Absolute	. 460
Most Extreme Differences	Positive	. 460
	Negative	-. 418
Kolmogorov-Smirnov Z		9.380
Asymp. Sig. (2-tailed)		. 000

Asymp. Sig. (2-tailed)000
G. Test distribution is Normal. ©. Catculated from data.

Pengùjian Terhadap Variabel SDRET

$\stackrel{3}{3}$		Unstandardized Residual
N 3		416
	Mean	0E-7
Normal Parameters ${ }^{\text {a,b }}$	Std. Deviation	1.97805247
	Absolute	. 460
MosExtreme Differences	Positive	. 460
춫	Negative	-. 413
Kolmogorov-Smirnov Z		9.384
Asymp. Sig. (2-tailed)		. 000

a. Test distribution is Normal.
b. Catculated from data.

Pengujian Terhadap Variabel ERROR

단		Unstandardized Residual
N		416
Normal Parameters ${ }^{\text {a,b }}$	Mean	0E-7
Normal Parameters ${ }^{\text {a,b }}$	Std. Deviation	. 11890541
-	Absolute	. 124
Most Extreme Differences	Positive	. 057
O	Negative	-. 124
Kolmogorov-Smirnov Z		2.527
Asymp. Sig. (2-tailed)		. 000

a. Test distribution is Normal.
b. Calculated from data.

Model 3

1. Pengujian Terhadap Variabel BETA

?
One-Sample Kolmogorov-Smirnov Test

$\begin{aligned} & \text { סo } \\ & \underset{\sim}{D} \end{aligned}$	$\stackrel{\text { 앙 }}{ }$		Unstandardized Residual
\bigcirc	N		416
ㄷ. ${ }^{\circ}$		Mean	0E-7
$\stackrel{3}{3}$	$\frac{\text { Normat Parameters }}{\lambda}$	Std. Deviation	30.80596590
Ј ᄃ	$\bigcirc \quad \bar{\square}$	Absolute	. 460
亏	Most Extreme Differences	Positive	. 460
@	${ }^{\circ}$ 즞	Negative	-. 409
§	Kolmogorov-Smirnov Z		9.392
¢	Assymp. Sig. (2-tailed)		. 000

द. Test distribution is Normal.
(2. Caleúlated from data.

Pengłjian Terhadap Variabel SDRET

$\begin{array}{ll} 0 & \text { 3 } \\ & \text { on } \\ \hline \end{array}$		Unstandardized Residual
N 3		416
	Mean	0E-7
Normat Parameters ${ }^{\text {a,b }}$	Std. Deviation	1.97719157
	Absolute	. 458
Most Extreme Differences	Positive	. 458
춫	Negative	-. 409
Kolmogorov-Smirnov Z		9.351
Asymp. Sig. (2-tailed)		. 000

a. Testistribution is Normal.
b. Calgulated from data.
Pengujian Terhadap Variabel ERROR

a. Test distribution is Normal.
b. Calçulated from data.

Lampiran 4: Hasil Uji Multikolinearitas

1. \rightarrow Pengujian Terhadap Variabel Beta

a=Dependent Variable: SDRET
3. Pengujian Terhadap Variabel Error

a. Dependent Variable: Error

Model 2

1. Pengujian Terhadap Variabel Beta

ס ס $\stackrel{D}{2}$	\underline{T}		Coefficients ${ }^{\text {a }}$						
	Nöodel	$\begin{aligned} & \text { U } \\ & \end{aligned}$	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics	
	〕	-	B	Std. Error	Beta			Tolerance	VIF
$\stackrel{\text { co }}{\substack{\text { ¢ }}}$	$\stackrel{\square}{3}$	(CGonstant)	22.717	30.017		. 757	. 450		
일	- エ	difwd	-. 755	5.569	-. 010	-. 136	. 892	. 427	2.341
\pm 즐.		dswp	-1.188	5.284	-. 017	-. 225	. 822	. 417	2.397
을 ㄹ.	1-\%	dopt	-. 173	7.327	-. 001	-. 024	. 981	. 764	1.309
उ ${ }^{\text {® }}$	N 0 0	dfut	1.023	14.959	. 004	. 068	. 945	. 872	1.147
D	-	capital	-6.214	6.710	-. 058	-. 926	. 355	. 628	1.592
cic	- ${ }^{\circ}$	size	-. 598	1.006	-. 048	-. 595	. 552	. 377	2.654

त्रिa Deendent Variable: BETA

g. Bengijian Terhadap Variabel SDRet

तa Dependēnt Variable: SDRET
3. Pengujian Terhadap Variabel ERROR

a. Dependent Variable: Error

Model 3

1. Pengujian Terhadap Variabel Beta

Coefficients ${ }^{\text {a }}$								
MÄdel	$\begin{aligned} & \frac{1}{\hat{\lambda}} \\ & \underline{\hat{n}} . \end{aligned}$	Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
\bigcirc	(Cुonstant)	23.498	32.236		. 729	. 466		
- エ	SDROA	-11.927	43.947	-. 015	-. 271	. 786	. 858	1.166
둗	SDEPS	. 007	. 027	. 013	. 238	. 812	. 806	1.240
훙	LEV	-. 184	. 477	-. 026	-. 385	. 701	. 530	1.887
n 0 D	LTQ	1.199	3.026	. 021	. 396	. 692	. 889	1.124
-	GRE	-. 231	1.198	-. 010	-. 193	. 847	. 981	1.019
$\stackrel{\square}{\circ}$	DFWD	-. 115	5.791	-. 002	-. 020	. 984	. 399	2.503
${ }^{2}$	DSWP	-1.687	5.405	-. 024	-. 312	. 755	. 403	2.480
$\stackrel{\text { ® }}{\text { ¢ }}$	DOPT	-. 768	7.463	-. 006	-. 103	. 918	. 745	1.342
会	DFUT	1.130	15.064	. 004	. 075	. 940	. 870	1.150
\bigcirc	CAP	-7.433	7.447	-. 069	-. 998	. 319	. 516	1.939
¢	STZE	-. 616	1.094	-. 049	-. 563	. 574	. 322	3.104

Taన్Dependent Variable: BETA

2. Pengujian Terhadap Variabel SDRET

Módel		Unstandardized Coefficients		$\begin{gathered} \hline \begin{array}{c} \text { Standardized } \\ \text { Coefficients } \end{array} \\ \hline \text { Beta } \\ \hline \end{gathered}$	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
¢	(Constant)	1.958	2.069		. 946	. 345		
$\stackrel{\rightharpoonup}{5}$	${ }_{\square} \mathrm{SDROA}$	-. 875	2.821	-. 017	-. 310	. 757	. 858	1.166
,	© ${ }^{\circ}$ SDEPS	. 000	. 002	. 013	. 236	. 814	. 806	1.240
$\stackrel{1}{2}$	LEV	-. 009	. 031	-. 021	-. 302	. 763	. 530	1.887
$\stackrel{\square}{2}$	LIQ	. 074	. 194	. 020	. 382	. 703	. 889	1.124
31	CRE	-. 016	. 077	-. 010	-. 207	. 836	. 981	1.019
$\stackrel{\text { \% }}{ }$	- DFWD	$9.608 \mathrm{E}-005$. 372	. 000	. 000	1.000	. 399	2.503
$\stackrel{\text { D }}{ }$	\square DSWP	-. 117	. 347	-. 026	-. 337	. 736	. 403	2.480
$\stackrel{\square}{\square}$	P DOPT	-. 052	. 479	-. 006	-. 109	. 913	. 745	1.342
-	E DFUT	. 049	. 967	. 003	. 051	. 959	. 870	1.150
\cdots	\cdots CAP	-. 523	. 478	-. 076	-1.094	. 275	. 516	1.939
\bigcirc	U. SIZE	-. 054	. 070	-. 067	-. 772	. 440	. 322	3.104

a ocpependent Variable: SDRET
3. Pengujian Terhadap Variabel ERROR

Lampiran 5: Hasil Uji Heteroskedastisitas

Model 1

1. $\stackrel{\rightharpoonup}{\square}$ Pengajian Terhadap Variabel Beta

aל Dependent Variable: ABS_RES_3
3. Pengujian Terhadap Variabel Error

(0) Coefficients ${ }^{\text {a }}$											
Model		$\begin{aligned} & \frac{1}{\mathrm{O}} \\ & \frac{1}{\lambda} \\ & \frac{\hat{n}}{0} \\ & \hline \end{aligned}$	Unstandardized Coefficients		Standardized Coefficients	t	Sig.				
		B	Std. Error	Beta							
告	0		(Constant)	-. 522	. 057		-9.208	. 000			
		SDROA	-. 052	. 094	-. 024	-. 551	. 582				
		SEEEPS	. 000	. 000	. 114	2.619	. 009				
	-	LEV	-. 001	. 001	-. 038	-. 696	. 487				
	\%	LTQ	. 010	. 006	. 067	1.599	. 111				
	망 믈	CBE	-. 001	. 003	-. 017	-. 410	. 682				
	$\stackrel{\text { Э }}{ }$	GAP	. 031	. 016	. 110	1.973	. 049				
	\bigcirc	SHZE	. 020	. 002	. 603	10.712	. 000				
Madel			Unstandardized Coefficients		Standardized Coefficients	t	Sig.				
		B	Std. Error	Beta							
	®		(Eonstant)	43.199	29.553		1.462	. 145			
	3	DEWD	-. 998	5.483	-. 014	-. 182	. 856				
	\bigcirc	DSWP	-2.181	5.202	-. 032	-. 419	. 675				
	13	DOPT	-. 597	7.214	-. 005	-. 083	. 934				
	亏	DFUT	. 049	14.728	. 000	. 003	. 997				
	짗	CAP	-11.452	6.606	-. 107	-1.734	. 084				
		SIZE	-1.161	. 991	-. 094	-1.172	. 242				

\qquad					
Model 3 0 0	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
(Constant)	2.935	1.895		1.549	. 122
DFWD	-. 070	. 352	-. 015	-. 198	. 843
DSWP	-. 144	. 334	-. 033	-. 432	. 666
DOPT	-. 024	. 463	-. 003	-. 052	. 959
DFUT	. 005	. 945	. 000	. 005	. 996
CAP	-. 770	. 424	-. 113	-1.818	. 070
SİZE	-. 080	. 064	-. 100	-1.252	. 211

a. Dependent Variable: ABS_RES_3

3．Pengujian Terhadap Variabel Error

Coefficients ${ }^{\text {a }}$

Model	$\begin{aligned} & \frac{1}{2} \\ & \frac{10}{\lambda} \\ & \frac{\hat{2}}{0} \\ & \hline \end{aligned}$	Unstandardized Coefficients		$\begin{gathered} \hline \begin{array}{c} \text { Standardized } \\ \text { Coefficients } \end{array} \\ \hline \text { Beta } \end{gathered}$	t	Sig．
		B	Std．Error			
$\stackrel{3}{6}$	（Constant）	－． 479	． 065		－7．359	． 000
$3{ }^{3}$ ロ	DFWD	－． 002	． 012	－． 009	－． 153	． 879
合 ${ }^{\circ}$	DSWP	． 022	． 011	． 118	1.896	． 059
1	DOPT	． 006	． 016	． 018	． 397	． 691
\cdots	DEUT	－． 093	． 032	－． 124	－2．877	． 004
$\stackrel{\square}{\circ}$ 믈	CAP	． 029	． 015	． 101	1.998	． 046
－Э	STZE	． 019	． 002	． 561	8.569	． 000

a？Dependent Variable：ABS＿RES＿4

Model 3 ज．
ㄹ．

Model		Unstandardized Coefficients		Standardized	t	Sig．
		B	Std．Error	Beta		
\％ 3	（Constant）	44.789	31.676		1.414	． 158
そ	SEROA	－21．515	43.185	－． 027	－． 498	． 619
$\stackrel{1}{2}$	SDEPS	． 012	． 027	． 024	． 442	． 659
\bigcirc	LEV	－． 372	． 469	－． 054	－． 793	． 428
，	LTQ	2.305	2.974	． 041	． 775	． 439
$\stackrel{3}{3}$	CRE	－． 310	1.178	－． 013	－． 263	． 792
\cdots	DFWD	． 112	5.691	． 002	． 020	． 984
F 3	DSWP	－2．924	5.311	－． 043	－． 550	． 582
－${ }^{\frac{1}{3}}$	DOPT	－1．381	7.333	－． 011	－． 188	． 851
D	DFUT	． 028	14.803	． 000	． 002	． 998
$\stackrel{\text { c }}{\text { c }}$	CAP	－13．796	7.318	－． 130	－1．885	． 060
入入	SIZE	－1．197	1.075	－． 097	－1．113	． 266

DaখDependēnt Variable：ABS＿RES
पе！

2．Pengujian Terhadap Variabel SDRet

Coefficients ${ }^{\text {a }}$						
Model	$\begin{aligned} & \frac{1}{\frac{1}{\lambda}} \\ & \frac{1}{\lambda} \\ & \frac{\hat{C}}{0} . \\ & \hline \end{aligned}$	Unstandardized Coefficients		$\begin{gathered} \begin{array}{c} \text { Standardized } \\ \text { Coefficients } \end{array} \\ \hline \text { Beta } \\ \hline \end{gathered}$	t	Sig．
		B	Std．Error			
ढ	（Constant）	3.029	2.032		1.491	． 137
3 エ	SDROA	－1．342	2.770	－． 026	－． 484	． 628
合 ${ }^{\text {a }}$	SĖEPS	． 001	． 002	． 023	． 419	． 676
¢	LEV	－． 021	． 030	－． 047	－． 699	． 485
in	L抽	． 143	． 191	． 039	． 750	． 454
10 ${ }_{0}^{\circ}$	CRE	－． 020	． 076	－． 013	－． 262	． 793
－ご	DFWD	－． 003	． 365	－． 001	－． 008	． 993
\bigcirc	DSWP	－． 194	． 341	－． 044	－． 568	． 570
き ¢	DOPT	－． 071	． 470	－． 009	－． 152	． 880
$\stackrel{\text { c }}{\sim}$	DFUT	． 004	． 950	． 000	． 005	． 996
$\stackrel{\text { D }}{\sim}$	GAP	－． 898	． 469	－． 131	－1．913	． 056
$\stackrel{\text { co }}{\substack{1 \\ 0}}$	Stze	－． 082	． 069	－． 103	－1．189	． 235

Da，Dependent Variable：ABS＿RES＿3
3．Pengū jian Terhadap Variabel Error

\square		Unstandardized Coefficients		Standardized Coefficients	t	Sig．
		B	Std．Error	Beta		
\cdots	（Gonstant）	－． 465	． 069		－6．699	． 000
$\stackrel{ }{2}$	SもROA	－． 039	． 095	－． 018	－． 413	． 680
3	SDEPS	． 000	． 000	． 108	2.432	． 015
츨	LEV	－． 001	． 001	－． 041	－． 750	． 454
\bigcirc	LIQ	． 007	． 007	． 047	1.112	． 267
$1^{\frac{0}{3}}$	CRE	－． 001	． 003	－． 014	－． 357	． 722
－3	DFWD	． 006	． 012	． 029	． 464	． 643
ऐ	DSWP	． 016	． 012	． 089	1.417	． 157
$\stackrel{\square}{\square}$	DOPT	． 000	． 016	－． 001	－． 027	． 978
닻	DFUT	－． 090	． 032	－． 120	－2．786	． 006
䦽	CAP	． 028	． 016	． 097	1.747	． 081
\sim	SIZE	． 018	． 002	． 538	7.623	． 000

a？Dependent Variable：ABS＿RES＿4
＇ueıode

Lampiran 6: Hasil Uji Autokorelasi
Model 1

Model 2

1. Pengujian Terhadap Variabel Beta

Model 3

1. Pengujian Terhadap Variabel Beta

Model 1

1. Penguian Terhadap Variabel Beta

ANOVA ${ }^{\text {a }}$

Model	\bigcirc	Sum of Squares	df	Mean Square	F	Sig.
ご	Regression	1575.737	7	225.105	. 233	. $977{ }^{\text {b }}$
1	Rësidual	393987.026	408	965.654		
-	T, tal	395562.763	415			

ảDependent Variable: BETA

a. Dependent Variable: BETA

2. Pengujian Terhadap Variabel SDRet

Variables Entered/Removed ${ }^{\text {a }}$			
Model	บ Variables Entered	Variables Removed	Method
1\%	SIZE, CRE, LIQ, SDROA, SDEPS, LEV, CAPb		Enter

DảDependent Variable: SDRET
ball requested variables entered.

Móodel \qquad	즞	R	R Square	Adjusted R Square	Std. Error of the Estimate
10	-	. $074{ }^{\text {a }}$. 005	-. 012	1.99449

Ta. Predictốs: (Constant), SIZE, CRE, LIQ, SDROA, SDEPS, LEV,

Moded	문	Sum of Squares	df	Mean Square	F	Sig.
- ᄅ	Regression	8.874	7	1.268	. 319	. $945^{\text {b }}$
$1 \pm$	Residual	1623.022	408	3.978		
\cdots	Tobtal	1631.897	415			

a-Dependent Variable: SDRET
bopredictoris: (Constant), SIZE, CRE, LIQ, SDROA, SDEPS, LEV, CAP

a.J.Dependent Variable: SDRET
'ueıode

a. Dependent Variable: Error

Model 2

1. Pengભjian Terhadap Variabel Beta

Möodel \%		Variables Entered		Variables Removed
13	SIZE, DFUT, DOPT, CAP, DFWD, DSWP ${ }^{\text {b }}$			
\qquad				
Modet 0	甬 R	R Square	Adjusted R Square	Std. Error of the Estimate
1® \sim	$\leq .058^{\text {a }}$. 003	-. 011	31.04590

añēdictors: (Constant), SIZE, DFUT, DOPT, CAP, DFWD, DSWP
Dependent Variable: BETA

~Dependent Variable: BETA
b3Predictors: (Constant), SIZE, DFUT, DOPT, CAP, DFWD, DSWP

$\begin{aligned} & \frac{\rightharpoonup}{\lambda} \\ & \frac{\hat{N}}{2} \\ & \text { a } \\ & \hline \end{aligned}$	Model	Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
3	(Constant)	22.717	30.017		. 757	. 450		
-	SDFWD	-. 755	5.569	-. 010	-. 136	. 892	. 427	2.341
D	GDSWP	-1.188	5.284	-. 017	-. 225	. 822	. 417	2.397
$\stackrel{\text { c }}{ }$	-DOPT	-. 173	7.327	-. 001	-. 024	. 981	. 764	1.309
직	E DFUT	1.023	14.959	. 004	. 068	. 945	. 872	1.147
\sim	\cdots CAP	-6.214	6.710	-. 058	-. 926	. 355	. 628	1.592
$\frac{5}{3}$. SIZE	-. 598	1.006	-. 048	-. 595	. 552	. 377	2.654

ㅁ․․․․ .ependent Variable: BETA

2. Pengujian Terhadap Variabel SDRet

Model	Variables Entered/Removed ${ }^{\text {a }}$			
1	Variables Entered	Variables Removed	Method	
1	SIZE, DFUT, DOPT, CAP, DFWD, DSWP		.	Enter

āDependent Variable: SDRET
bAll requested variables entered.

Modet D \sim	즞	R	R Square	Adjusted R Square	Std. Error of the Estimate
10	-	. $071^{\text {a }}$. 005	-. 010	1.99251

रa Predictớs: (Constant), SIZE, DFUT, DOPT, CAP, DFWD, DSWP
तิbopependent Variable: SDRET
$\stackrel{y}{c}$

Moded	n	Sum of Squares	df	Mean Square	F	Sig.
		8.130	6	1.355	. 341	. $915^{\text {b }}$
		1623.767	409	3.970		
		1631.897	415			

acDependent Variable: SDRET
b"Predictors: (Constant), SIZE, DFUT, DOPT, CAP, DFWD, DSWP
$\stackrel{0}{0}$

,	즞	Coefficients ${ }^{\text {a }}$						
$\xrightarrow{3}$	Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics	
${ }^{2}$	층	B	Std. Error	Beta			Tolerance	VIF
$\frac{5}{3}$	(Gonstant)	1.875	1.926		. 973	. 331		
${ }^{2}$	DDFWD	-. 037	. 357	-. 008	-. 104	. 917	. 427	2.341
3	DSWP	-. 087	. 339	-. 020	-. 257	. 797	. 417	2.397
〇1	DOPT	-. 016	. 470	-. 002	-. 035	. 972	. 764	1.309
$\underset{\sim}{3}$	DFUT	. 041	. 960	. 002	. 043	. 966	. 872	1.147
$\frac{\square}{3}$	5 CAP	-. 462	. 431	-. 067	-1.072	. 284	. 628	1.592
$\stackrel{\square}{8}$	4 SIZE	-. 052	. 065	-. 064	-. 799	. 425	. 377	2.654

a Dependẹnt Variable: SDRET

Model 3

1. Pengભjian Terhadap Variabel Beta

Variables Entered/Removed ${ }^{\text {a }}$

Model \|	Variables Entered			
$1{ }_{\frac{1}{3}}^{3}$ I	SIZE, CRE, LIQ, DFUT, SDROA, SDEPS, DOPT, LEV, BSWP, CAP, DFWD ${ }^{\text {b }}$			
	dent Variabl uested varia 	BETA es entered. Model	mary ${ }^{\text {b }}$	
Mode	$\begin{array}{\|ll} \hline \stackrel{\underset{\rightharpoonup}{f}}{\stackrel{~}{E}} & \mathrm{R} \\ \hline \end{array}$	R Square	Adjusted R Square	Std. Error of the Estimate
10 3	-0.066 ${ }^{\text {a }}$. 004	-. 023	31.22254

a Predictors: (Constant), SIZE, CRE, LIQ, DFUT, SDROA, SDEPS,
DOP干, LE女; DSWP, CAP, DFWD
D.Dependent Variable: BETA

Model	3	Sum of Squares	df	Mean Square	F	Sig.
-	Regression	1724.636	11	156.785	. 161	. $999{ }^{\text {b }}$
$1{ }^{1}$	Residual	393838.127	404	974.847		
3	Total	395562.763	415			

Da?Dependent Variable: BETA
b@Predictors: (Constant), SIZE, CRE, LIQ, DFUT, SDROA, SDEPS, DOPT, LEV, DSWP, CAP, DFWD

Coefficients ${ }^{\text {a }}$

$\left[\begin{array}{l} 3 \\ 3 \\ -\frac{0}{3} \\ \hline \end{array}\right.$	Model	Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	Collinearity Statistics	
		B	Std. Error				Tolerance	VIF
$\stackrel{\square}{\square}$	(Constant)	23.498	32.236		. 729	. 466		
칯	FSDROA	-11.927	43.947	-. 015	-. 271	. 786	. 858	1.166
$\stackrel{ }{3}$	$\#$ SDEPS	. 007	. 027	. 013	. 238	. 812	. 806	1.240
$\stackrel{\sim}{5}$	0 LEV	-. 184	. 477	-. 026	-. 385	. 701	. 530	1.887
${ }_{0}$	\bigcirc LIQ	1.199	3.026	. 021	. 396	. 692	. 889	1.124
$\stackrel{\square}{\sim} 1$	2. CRE	-. 231	1.198	-. 010	-. 193	. 847	. 981	1.019
	DFWD	-. 115	5.791	-. 002	-. 020	. 984	. 399	2.503
	(1) DSWP	-1.687	5.405	-. 024	-. 312	. 755	. 403	2.480
	5 DOPT	-. 768	7.463	-. 006	-. 103	. 918	. 745	1.342
	- DFUT	1.130	15.064	. 004	. 075	. 940	. 870	1.150
	CAP	-7.433	7.447	-. 069	-. 998	. 319	. 516	1.939
	- SIZE	-. 616	1.094	-. 049	-. 563	. 574	. 322	3.104

a. Dependent Variable: BETA

2. Pengujian Terhadap Variabel SDRet

a. Dependent Variable: SDRET

a. Dependent Variable: Error

SURAT PERNYATAAN

Saya yangbertanda tangan di bawah ini :
: Frena Herlin Subhadevi

: 36130275

: Akuntang ${ }^{\circ}$

: H. Kelapa Molek IV BLok SA 2 Nomor 1
Kelapa Gading, Jakaria Utara
Kodल Pos
: 14240
$:$
:(021) 4527913.

$: 0857 \quad 1657 \quad 2137$

Demikian agar yang berkepentingan maklum.

Jakarta,亳 September 2017
Yang membugt perayataan,

Irena Herlun subnaden:
(Nama Le Âgkap)
ㅇํㅇ

